Investigation of the sintering kinetic and development of ceramic masses for obtaining large-format porcelain stoneware in the conditions of high-speed firing

  • O. Yu. Fedorenko NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • M. I. Ryshchenko NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • S. V. Kartyshev NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • L. O. Yashchenko NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • O. Ya. Pitak Kaunas University of Technology, Kaunas, Lithuania
Keywords: sintering kinetic, ceramic mass, large-format porcelain stoneware, high-speed firing.

Abstract

The paper considers the resource and energy saving reserves in the production of large-format stoneware slabs. The possibility of replacing high-quality feldspars with materials of technogenic origin, such as the extraction and processing waste of various feldspar-bearing rocks of domestic deposits has been investigated. The possibility of sintering process intensification has been investigated, as a condition for the use of high-speed firing modes in the stoneware production. As a result of the carried out studies, the kinetic features of ceramic masses sintering with alkaline syenites, granites and pegmatite enrichment wastes as fluxing component were determined. The formation conditions of densely sintered materials with a complex of high operational properties have been determined. The expediency of replacing Turkish feldspars with waste products of alkaline syenites has been established, while the level of physical, mechanical and operational properties of stoneware slabs meets the requirements of international standards. It is shown that, the use of complex flux, including feldspar-bearing rocks waste and dolomite, provides a significant decrease in the firing temperature of products (up to 1150 °C) while maintaining a high level of properties of stoneware slabs of class BІa. The obtained data indicate the possibility of optimizing the heat treatment parameters from the view point of energy saving with the further use of alternative fluxes in the large-format stoneware production. On the example of using the alkaline syenites wastes, the optimal ratios of the clay and fluxing components of ceramic masses have been established to obtain products with a complex of high performance characteristics when burning white clays of different chemical and mineral composition, which is a necessary condition for using a wide range of decorating techniques stoneware slabs. The structural-phase features of materials obtained under the conditions of high-speed firing are established: the formation of finely dispersed acicular mullite, which plays the role of a reinforcing component, as well as high structural homogeneity and maximum compaction, as evidenced by a few individual small pores presence.

The combination of excellent technical qualities and large dimensions opens up new possibilities for the use of stoneware slabs as structural elements (countertops, ventilated facades, insulating panels for the installation of electrical systems, etc.).

References

Sanchez E. Technical considerations on porcelain tile product and their manufacturing process, Part I Int. Ceramic Review. 2003. № 52 (1). Р. 6—16.

Sanchez E. Technical considerations on porcelain tile product and their manufacturing process, Part I Int. Ceramic Review. 2003, no. 52 (1), pp. 6—16.

Processing and properties of large-sized ceramic slabs / M. Raimondo et al. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2010. 49 (4).

Raimondo M., Dondi Michele, Chiara Zanelli et al. Processing and properties of large-sized ceramic slabs. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2010, no. 49 (4).

Influence of Strengthening Components on Industrial Mixture of Porcelain Stoneware Tiles / C. Zanelli et al. Key Engineering Materials. 2004. Vols. 264—268. P. 1491—1494.

Zanelli C., Dondi M., Guarini G., Raimondo M., Roncarati I. Influence of Strengthening Components on Industrial Mixture of Porcelain Stoneware Tiles. Key Engineering Materials. 2004, vols. 264—268, pp. 1491—1494.

Фізико-хімічна оцінка придатності некондиційної кварц-польовошпатової сировини в технології кам‘яно-керамічних виробів / М. І. Рищенко та ін. Будівельні матеріали, вироби та санітарна техніка. 2006. Вип. 22. С. 89—94.

Ryshchenko M. I., Fedorenko O. Iu., Shchukina L. P., Fіrsov K. M., Mіkheєnko L. O. Fizyko-khimichna otsinka prydatnosti nekondytsiinoi kvarts-polovoshpatovoi syrovyny v tekhnolohii kam‘iano-keramichnykh vyrobiv [Physico-chemical evaluation of the suitability of substandard quartz-feldspar raw materials in the technology of stone-ceramic products]. Budivelni materialy, vyroby ta sanitarna tekhnika [Building materials, products and sanitary ware]. 2006, issue 22, pp. 89—94 (in Ukrainian).

Возможность получения керамогранита с использованием кварц-полевошпатового сырья Украины / М. И. Рыщенко, Л. П. Щукина, Е. Ю. Федоренко, К. Н. Фирсов. Стекло и керамика. 2008. № 1. С. 24—27.

Ryshchenko M. I., Shchukina L. P., Fedorenko E. Iu., Fіrsov K. M. Vozmozhnost polucheniya keramogranita s ispolzovaniyem kvarts-polevoshpatovogo syria Ukrainy [Possibility of obtaining porcelain stoneware using quartz-feldspar raw materials of Ukraine]. Steklo i keramika [Glass and ceramics]. 2008, no. 1, pp. 24—27 (in Russian).

Керамогранит на основе отечественных гранитных пегматитов: микроструктура и свойства / М. И. Рыщенко и др. Строительные материалы и изделия. 2008. № 5. С. 2—5.

Ryshchenko M. I., Fedorenko E. Yu., Mikheyenko L. A., Firsov K. N., Savitskiy B. A. Keramogranit na osnove otechestvennykh granitnykh pegmatitov: mikrostruktura i svoystva [Porcelain stoneware based on domestic granite pegmatites: microstructure and properties]. Stroitelnyye materialy i izdeliya [Building materials and products]. 2008, no. 5, pp. 2—5 (in Russian).

Klein G. Application of feldspar raw materials in the silicate ceramic industry. Ceramics International. 2001. № 50. Р. 8—11.

Klein G. Application of feldspar raw materials in the silicate ceramic industry. Ceramics International. 2001, no. 50, pp. 8—11.

Feldspathic and pyrophyllitic porcelain evolution during fast firing / K. Dana, S. Ghosh, T. Kumar Mukhopadhyay, S. Kumar Das. American Ceramic Society Bulletin. 2006. Vol. 85, № 12. P. 9201—9203.

Dana K., Ghosh S., Kumar Mukhopadhyay T., Kumar Das S. Feldspathic and pyrophyllitic porcelain evolution during fast firing. American Ceramic Society Bulletin. 2006, vol. 85, no. 12, pp. 9201—9203.

Use of rhyolite as flux in porcelain tile production / Alpagut Kara et al. Industrial Ceramics. 2009. № 29 (2). Р. 71—81.

Kara Alpagut, Kayacı Kağan, Küçüker A. S. et al. Use of rhyolite as flux in porcelain tile production. Industrial Ceramics. 2009, no. 29 (2), pp. 71—81.

Dondi M. Feldspathic fluxes for ceramics: sources, production trends and technological value. Resources, Conservation & Recycling. 2018. № 133. P. 191—205.

Dondi M. Feldspathic fluxes for ceramics: sources, production trends and technological value. Resources, Conservation & Recycling. 2018, no. 133, pp. 191—205.

Balkwill S., Bougher A. K. Arkansas nepheline syenite as an alternative economic fluxing agent in ceramic formulations. The Ceramic Engineering and Science Proceeding. 2001. № 31. Р. 77—90.

Balkwill S., Bougher A. K. Arkansas nepheline syenite as an alternative economic fluxing agent in ceramic formulations. The Ceramic Engineering and Science Proceeding. 2001, no. 31, pp. 77—90.

The use of nepheline syenite in a body mix for porcelain stoneware bodies / L. Esposito et al. Ceramics International. 2005. № 31. Р. 233—240.

Esposito L., Salem A., Tucci A., Gualtieri A., Jazaryeri S. H. The use of nepheline syenite in a body mix for porcelain stoneware bodies. Ceramics International. 2005, no. 31, pp. 233—240.

Rahaman M. N. Ceramic Processing and Sintering. Washington, 1995. 770 p.

Rahaman M. N. Ceramic Processing and Sintering. Washington, 1995. 770 p.

Стрелов К. К., Кащеев И. Д. Теоретические основы технологии огнеупорных материалов. Москва : Металлургия, 1996. С. 95—99.

Strelov K. K., Kashcheyev I. D. Teoreticheskiye osnovy tekhnologii ogneupornykh materialov [Theoretical foundations of refractory materials technology]. Moscow, Metallurgiya Publ., 1996. pp. 95—99 (in Russian).

The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties / C. Zanelli, M. Raimondo, G. Guarini, M. Dondi. Journal of Non-Crystalline Solids. 2011. Vol. 357, № 16. P. 3251—3260.

Zanelli C., Raimondo M., Guarini G., Dondi M. The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. Journal of Non-Crystalline Solids. 2011, vol. 357, no. 16, pp. 3251—3260.

The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents / M. Dapiaggi et al. Journal of the European Ceramic Society. 2015. Vol. 35(16). P. 4547—4555.

Dapiaggi M., Pagliari L., Pavese A. et al. The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents. Journal of the European Ceramic Society. 2015, vol. 35 (16), pp. 4547—4555.

Martín-Márquez J., Ma Rincón J., Romero M. Mullite development on firing in porcelain stoneware bodies. Journal of the European Ceramic Society. 2010. Vol. 30. Р. 1599—1607.

Martín-Márquez J., Ma Rincón J., Romero M. Mullite development on firing in porcelain stoneware bodies. Journal of the European Ceramic Society. 2010, vol. 30, pp. 1599—1607.

Published
2020-12-30
How to Cite
Fedorenko, O. Y., Ryshchenko, M. I., Kartyshev, S. V., Yashchenko, L. O., & Pitak, O. Y. (2020). Investigation of the sintering kinetic and development of ceramic masses for obtaining large-format porcelain stoneware in the conditions of high-speed firing. Scientific Research on Refractories and Technical Ceramics, 120, 160-174. https://doi.org/10.35857/2663-3566.120.16