Calculation of eutectics temperatures and compositions of multicomponent sections of the system (Mg, Ca, Sr, Ba)O—Al2O3—Cr2O3

  • A. N. Korohodska NTU “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
  • G. N. Shabanova NTU “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
  • S. M. Logvinkov Kharkiv National Economic University named after S. Kuznets, Kharkiv, Ukraine
  • O. V. Khrystych National University of Civil Protection of Ukraine, Kharkiv, Ukraine
  • M. M. Volobuev Kharkiv National University named after V. N. Karazin, Kharkiv, Ukraine
Keywords: multicomponent system, cross section, eutectic, temperature, liquidus, unshaped materials, spinel

Abstract

With change in the structure of metallurgical production in Ukraine, the range of used refractory materials is expanding: the share of unshaped highquality refractories is growing, since this eliminates the time-consuming and energy-consuming operation of firing piece products, and also simplifies the operation of creating a lining layer. To establish the maximum possible operating temperature of materials developed on the basis of compositions of the optimal regions of multicomponent oxide system (Mg, Ca, Sr, Ba)O— Al2O3—Cr2O3, it was necessary to calculate the temperatures and compositions of the eutectics of binary, ternary and four-component sections, which was the purpose of this study.

For calculations in binary sections, the Epstein — Howland method is most acceptable, and in three- and four-component sections — the solution of nonlinear equations system. It was found that to obtain a refractory unshaped material based on calcium aluminium chromite cement with periclase as a filler, it is necessary to adjust the phase composition of the cement towards an increased CaCr2O4 content, and the total composition must contains at least 75 wt. % periclase or magnesium spinel. In addition, in the case of alumina hydrates formation as a result of cement hydration processes, magnesium spinel will be synthesized as part of a refractory unshaped material during service. To obtain refractory unshaped materials based on strontium aluminium chromite cement and periclase as filler, it is necessary to increase the SrAl2O4 content and minimize the Sr3Al2O6 content in the cement composition, while the filler content in the composition can vary within wide limits, since the melting temperature of such compositions will be more than 1700 °C. To create refractory unshaped materials based on barium aluminium chromite cements, it is necessary to increase the content of BaAl2O4 in the cement composition as the most hydraulically active and refractory component and the composition of the composite material should be low- or ultra-low-cement in order to increase the operating temperature. In addition, in the case of chromium hydroxides formation during the hydration of aluminium chromite cement, chromium spinel will be synthesized in the composition during service, increasing the refractoriness of resulting composition. Thus, by varying the type and phase composition of cement and the ratio of cement and aggregates in the concrete composition, it is possible to obtain unshaped materials with a wide operating temperature range for use in heat-stressed areas of high-temperature aggregates.

References

Шабанова Г. Н. Барийсодержащие оксидные системы и вяжущие материалы на их основе : монография. Харьков : НТУ «ХПИ», 2006. 280 с.

Shabanova G. N. Bariysoderzhashchie oksidnye sistemy i vyazhushchie materialy na ikh osnove : monografiya [Barium-containing oxide systems and binders based on them : monograph]. Khar'kiv, National Technical University "Kharkiv Polytechnic Institute" Publ., 2006. 280 p. (in Russian).

Кальцийбариевые оксидные системы и вяжущие материалы на основе их композиций : монографія / А. Н. Корогодская и др. Харьков : ТОВ «Планета — Прінт», 2014. 273 с.

Korogodskaya A. N., Shabanova G. N., Mirgorod O. V., Deyneka V. V., Tsapko N. S. Kal'tsiybarievye oksidnye sistemy i vyazhushchie materialy na osnove ikh kompozitsiy : monografiya [Calcium barium oxide systems and binders based on their compositions : monograph]. Khar'kiv, LLC "Planeta — Prіnt" Publ., 2014. 273 p. (in Russian).

Shabanova G. N., Korohodska A. N. Alkali-earth Element Aluminates and Chromites Cement Bonded Refractory Castables. China’s Refractories. 2016. Vol. 25, No 1. Р. 26—31.

Shabanova G. N., Korohodska A. N. Alkali-earth Element Aluminates and Chromites Cement Bonded Refractory Castables. China’s Refractories. 2016, vol. 25, no. 1, pp. 26—31.

Epstein L. F., Howland W. H. Binary mixture of UO2 on other oxiden. J. Amer. Ceram. Soc. 1953. Vol. 36, No 10. P. 334—335.

Epstein L. F., Howland W. H. Binary mixture of UO2 on other oxiden. J. Amer. Ceram. Soc. 1953, vol. 36, no. 10, pp. 334—335.

Луцык В. И., Воробьева В. П., Сумкина О. Г. Моделирование фазовых диаграмм четверных систем. Новосибирск : Наука, 1992. 199 с.

Lutsyk V. I., Vorob'eva V. P., Sumkina O. G. Modelirovanie fazovykh diagramm chetvernykh system [Modeling phase diagrams of quaternary systems]. Novosibirsk, Nauka [Science] Publ., 1992. 199 p. (in Russian).

Городенко Я. Г. Массцентрический метод изображения многокомпонентных систем. Киев : Наукова думка, 1982. 263 с.

Goroshchenko Ya. G. Masstsentricheskiy metod izobrazheniya mnogokomponentnykh system [Mass-centric method of imaging multicomponent systems]. Kyiv, Naukova Dumka [Scientific thought] Publ., 1982. 263 p. (in Russian).

Бабушкин В. И., Матвеев Г. М., Мчедлов-Петросян О. П. Термодинамика силикатов. Москва : Стройиздат, 1986. 408 с.

Babushkin V. I., Matveev G. M., Mchedlov-Petrosyan O. P. Termodinamika silikatov [Thermodynamics of silicates]. Moscow, Stroyizdat [Construction Publishing House], 1986. 408 p. (in Russian).

Торопов Н. А., Барзаковский В. П., Лапин В. В., Курцева Н. М. Диаграммы состояния силикатных систем : справ очник : в 6 т. Ленинград : Наука, 1969. Вып. 1. Двойные системы. 822 с.

Toropov N. A., Barzakovskij V. P., Lapin V. V., Kurceva N. M. Diagrammy sostojanija silikatnyh sistem: spravochnik : v 6 t. [State diagrams of silicate systems: a handbook : in 6 vol.]. Leningrad, Nauka [Science] Publ., 1969. Is. 1. Dvojnye sistemy [Dual systems]. 822 p. (in Russian).

Термические константы веществ : справ очник : в 9 т. / под ред. В. П. Глушко. Москва : Изд-во АН СССР, 1979. Т. 9. 574 с.

Glushko V. P., ed. Termicheskie konstanty veshchestv : spravochnik: v 9 t. [Thermal constants of substances: a handbook : in 9 vol.]. Moscow, Publishing house of the Academy of Sciences of the USSR, 1979. Vol. 9. 574 p. (in Russian).

Бережной А. С. Многокомпонентные системы окислов. Киев : Наукова думка, 1970. 544 с.

Berezhnoy A. S. Mnogokomponentnye sistemy okislov [Multicomponent oxide systems]. Kyiv, Naukova Dumka [Scientific thought] Publ., 1970. 544 p. (in Russian).

Горшков В. С., Савельєв В. Г., Абакумов А. В. Вяжущие, керамика и стеклокристаллические материалы: Структура и свойства : Справочное пособие. Москва : Стройиздат, 1994. 584 с.

Gorshkov V. S., Savel'ev V. G., Abakumov A. V. Vyazhushchie, keramika i steklokristallicheskie materialy: Struktura i svoystva : Spravochnoe posobie [Binders, Ceramics, and Glass-Crystalline Materials : Structure and Properties : A Reference Guide]. Moscow, Stroyizdat [Construction Publishing House], 1994. 584 p. (in Russian).

Pausch V. H., Muller-Buschbaum Hk. Ein Neuer Bautyp zur Formel Me2+M23+O4. Die Kristallsfruktur von SrCr2O4. Z. Anorg. Allg. Chemie. 1974. Bd. 405, Heft 1. P. 1—7.

Pausch V. H., Muller-Buschbaum Hk. Ein Neuer Bautyp zur Formel Me2+M23+O4. Die Kristallsfruktur von SrCr2O4. Z. Anorg. Allg. Chemie. 1974, Bd. 405, Heft 1, pp. 1—7.

Maruyama T., Inoue T., Akashi T. Standard Gibbs Energies of Formation of SrCrO4 and Sr3Cr2O8. Materials Transactions (JIM). 1998. Vol. 39, No 11. P. 1158—1161.

Maruyama T., Inoue T., Akashi T. Standard Gibbs Energies of Formation of SrCrO4 and Sr3Cr2O8. Materials Transactions (JIM). 1998, vol. 39, no. 11, pp. 1158—1161.

Гордеев С. Я., Сердюков В. И. Диаграмма состояния системы BaO—Cr2O3. Неорганические материалы. 1967. Т. 3, № 9. С. 1653—1656.

Gordeev S. Ja., Serdjukov V. I. Diagramma sostojanija sistemy BaO—Cr2O3 [State diagram of the BaO—Cr2O3 system]. Neorganicheskie materialy [Inorganic Materials]. 1967, vol. 3, no. 9, pp. 1653—1656.

Published
2021-12-30
How to Cite
Korohodska, A. N., Shabanova, G. N., Logvinkov, S. M., Khrystych, O. V., & Volobuev, M. M. (2021). Calculation of eutectics temperatures and compositions of multicomponent sections of the system (Mg, Ca, Sr, Ba)O—Al2O3—Cr2O3 . Scientific Research on Refractories and Technical Ceramics, 121, 94-102. https://doi.org/10.35857/2663-3566.121.10