Alumina silicate glass-ceramic materials for electrical purposes

  • O. V. Savvova KhNUMG named after A. N. Beketov, Kharkov, Ukraine
  • G. K. Voronov KhNUMG named after A. N. Beketov, Kharkov, Ukraine
  • S. A. Ryabinin NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • E. Yu. Fedorenko NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
  • V. D. Timofeev NTU "Kharkov Polytechnic Institute", Kharkov, Ukraine
Keywords: alumina silicate glass-ceramic materials, sitallized structure, electrical properties, electrical purposes.

Abstract

The prospects for use of glass-ceramic materials as electrical products were analyzed. The priority of a self-organized macro- and nanostructure formation of the glass-ceramic materials under conditions of low-temperature heat treatment to ensure their high physical and chemical properties was shown. The choice of an alumina silicate system of materials for obtaining high-strength glass-ceramic materials with improved electrical properties was substantiated, taking into account the aspects of energy saving. The technological modes of cooking, forming and heat treatment of glass-ceramic materials were determined.

Resistance, dielectric constant and dielectric loss tangent at 106 Hz were measured using an E6-13A teraometer on a trielectrode system at a temperature of +29 °C and a DE-5000 RLC meter. Electric strength (Em) and cold crushing strength were determined according to GOST 24409-80. Tensile strength according to GOST 32281.1-2013 (EN 1288-1: 2000).

The decisive influence on the electrical properties of glass-ceramic materials the crystalline phases of α-cordierite, β-spodumene or lithium disilicate, as well as the residual glass phase composition has been established. The structure influence of the alumina silicate glass-ceramic materials on the provision of their electrical (tgδ∙104 = 70 ÷ 80; ε = 8.0 ÷ 9.3 (at f = 106 Hz); lg ρv = 12.9 ÷ 15.0 (ρv, Ohm·cm at Т = 20 °C) and mechanical (K1C = 3.15 ÷ 4.3 МPа∙м1/2; σ comp = 630 ÷ 700 МPа, σbend = 300 ÷ 350 МPа; KCU = 4.8 ÷ 5.9 kJ/m2) properties.

It was found that, the defining condition for the developed glass-ceramic materials use as insulating materials under repeated exposure to high-temperature operations is their high breakdown strength Em = 37 ÷ 42 MV/m and thermal shock resistance due to low TCLE (α∙107 = 21.5 ÷ 31.8 deg-1).

The influence of phase composition and structure of the alumina silicate glass-ceramic materials on their electrical and mechanical properties was analyzed. A comparative assessment of the known ceramic and glass-ceramic materials for electrical purposes has made it possible to establish the feasibility of using the developed materials as substrates in the design of a hybrid integrated circuit, vacuum-tight shell and capacitor dielectrics.

References

Структура та властивості склокристалічних матеріалів : монографія / Л. Л. Брагіна, О. В. Саввова, О. В. Бабіч, Ю. О. Соболь. Харків : ООО «Компанія СМІТ», 2016. 253 с.

Bragina L. L., Savvova O. V., Babich O. V., Sobol Yu. O. Struktura ta vlasty`vosti sklokry`stalichny`x materialiv: monografiya [Structure and properties of glass-crystalline materials: monograph]. Kharkiv, LLC "Kompaniya SMIT" Publ., 2016. 253 p. (in Ukrainian).

Саркисов П. Д. Направленная кристаллизация стекла — основа получения многофункциональных стеклокристаллических материалов. Москва : РХТУ им. Д. И. Менделеева, 1997. 218 с.

Sarkisov P. D. Napravlennaja kristallizacija stekla – osnova poluchenija mnogofunkcional'nyh steklokristallicheskih materialov [Directional crystallization of glass - the basis for obtaining multifunctional glass-crystalline materials]. Moscow, RHTU im. D. I. Mendeleeva Publ., 1997. 218 p. (in Russian).

Современное состояние разработок в области радиопрозрачных кордиеритовых ситаллов (обзор) / А. С. Чайникова и др. Авиационные материалы и технологии. ФГУП «ВИАМ». 2014. № 6. С. 45—51.

Chajnikova A. S., Voropaeva M. V., Alekseeva L. A., Orlova L. A., Samsonov V. I. Sovremennoe sostojanie razrabotok v oblasti radioprozrachnyh kordieritovyh sitallov (obzor) [Current state of developments in the field of radio-transparent cordierite sitalls (review)]. Aviacionnye materialy i tehnologii [Aviation materials and technologies]. FGUP "VIAM" Publ., 2014, no. 6, pp. 45—51 (in Russian).

Суздальцев Е. И. Радиопрозрачные, высокотермостойкие материалы ХХI века. Огнеупоры и техническая керамика. 2002. № 3. С. 42—50.

Suzdal'cev E. I. Radioprozrachnye, vysokotermostojkie materialy XXI veka [Radiotransparent, highly heat-resistant materials of the XXI century]. Ogneupory i tehnicheskaja keramika [Refractories and technical ceramics]. 2002, no. 3, pp. 42—50 (in Russian).

Пат. 6632758 США, МПКТ С 03 С 10/02, Transparent gallate glass-ceramic. Beall Georg H., Pinckney Linda R., Samson Bryce N.; Corning Inc., № 10/139705; заявл. 02.05.2002; опубл. 14.10.2003.

Pat. Corning Inc. Transparent gallate glass-ceramic. Inventors: Beall Georg H., Pinckney Linda R., Samson Bryce N. Appl: 2002-05-02, no. 10/139705; publ: 2003-10-14. IPC C 03 C 10/02. Patent USA, no. 6632758.

Пат. 5545595 США, МКИ6 С 03 С 3/112, Walelength up-conversion transparent glass ceramics and a process for the production on the same. Wang Yuhu, Ohwaki Junich; Simita Optical Glass, Inc. Nippon Telegraph and Telephone Corp. № 400959; заявл. 8.03.95; опубл. 13.08.96.

Pat. Simita Optical Glass, Inc. Nippon Telegraph and Telephone Corp. Walelength up-conversion transparent glass ceramics and a process for the production on the same. Inventors: Wang Yuhu, Ohwaki Junich. Appl: 95-03-08, no. 400959; publ: 96-08-13. IPC 6 С 03 С 3/112. Patent USA, no. 5545595.

Пат. 1736452 США, MПK C 03 C 10/06, Glass-ceramics for laser systems. Siroia Marina, Galun Ehud, Goldstein Adrian, Buch Alia, Krupkin Vladimir, Cohen Rami, Glushko Alexander, Luria Elena; Elop Electro-Optics Ind. Ltd. № 05105511.9; заявл. 21.06.2005; опyбл. 27.12.2006.

Pat. Elop Electro-Optics Ind. Ltd. Glass-ceramics for laser systems. Inventors: Siroia Marina, Galun Ehud, Goldstein Adrian, Buch Alia, Krupkin Vladimir, Cohen Rami, Glushko Alexander, Luria Elena. Appl: 2005-06-21, no. 05105511.9; publ: 2006-12-27. IPC C 03 C 10/06. Patent USA, no. 1736452.

Pat. 6649549 USА, Glass composition for crystallized glass. Nagana Нideki, Yuki Hiroshi, Mori Toshihara, Kawai Hideki; Minolta Co., Ltd. 2003.11.

Pat. Minolta Co., Ltd. Glass composition for crystallized glass. Inventors: Nagana Нideki, Yuki Hiroshi, Mori Toshihara, Kawai Hideki. Appl: 2000-04-03; publ: 2003-11-18. Patent USA, no. 6649549.

Пат. 6627566 США, МПК7 С 03 С 10/04, Substrate for information recording medium and magnetic recording medium composed of crystallized glass. Zou Xuely; Hoya Corp. № 09/610687; заявл. 07.07.2000; опубл. 30.09.2003.

Pat. Hoya Corp. Substrate for information recording medium and magnetic recording medium composed of crystallized glass. Inventor: Zou Xuely. Appl: 07.07.2000-07-07, no. 09/610687; publ: 2003-09-30. IPC 7 C 03 C 10/04. Patent USA, no. 6627566.

Пат. 7226881 США, MПK C 03 C 10/14, Thermal expansion transparent glass ceramics. K. K. Ohara, Goto Naoyuki. № 10/773934; зaявл 06.02.2004; опyбл. 05.06.2007; приор. 19.09.2003, № 2003-327892; HRK 501/4.

Thermal expansion transparent glass ceramics. Inventors: K. K. Ohara, Goto Naoyuki. Appl: 2004-02-06, no. 10/773934; publ: 2007-06-05; prior: 2003-09-19, no. 2003-327892; HRK 501/4. IPC C 03 C 10/14. Patent USA, no. 7226881.

Пат. 6582826 США, МПК7 В 32 В 17/00, С 03 С 10/14, Glass ceramics. K. K. Ohara, Goto Naoyuki, Ishioka Junko. № 09/594105; заявл. 14.06.2000; опубл. 24.06.2003.

Glass ceramics. Inventors: K. K. Ohara, Goto Naoyuki, Ishioka Junko. Appl: 2000-06-14, no. 09/594105; publ: 2003-06-24. IPC 7 B 32 B 17/00, C 03 C 10/14. Patent USA, no. 6582826.

Пат. 6632757 США, МПК7 С 03 С 10/04, Transparent forsterite glass-ceramic. Beall Georg H; Corning Inc. № 09/929554; заявл. 14.08.2001; опубл. 14.10.2003.

Pat. Corning Inc. Transparent forsterite glass-ceramic. Inventor: Beall Georg H. Appl: 2001-08-14, no. 09/929554; publ: 2003-10-14. IPC 7 C 03 C 10/04. Patent USA, no. 6632757.

Pat. 2014/0001485 A1 USA, Glass-ceramic substrates for semiconductor processing. G. H. Beall, J. G. Couillard; Corning Inc. 2014.

Pat. Corning Inc. Glass-ceramic substrates for semiconductor processing. Inventors: G. H. Beall, J. G. Couillard. Publ: 2014. Patent USA, no. 2014/0001485 A1.

Пат. 7285506 США, MПK C 03 C 10/12, Lamp reflector substrate glass, glass-ceramic materials and process for making the same. Horsfall William E., Stewart Ronald L.; Corning Inc. № 11/5926.95; зaявл. 03.11.2006; опyбл. 23.10.2007; HПK 501/7.

Pat. Corning Inc. Lamp reflector substrate glass, glass-ceramic materials and process for making the same. Inventors: Horsfall William E., Stewart Ronald L. Appl: 2006-11-03, no. 11/5926.95; publ: 2007-10-23. IPC C 03 C 10/12. Patent USA, no. 7285506.

Пат. 7189672 США, МПК С 03 С 3/062, Aluminium silicophosphate glasses. Aitken Bruce G., Beall George; Corning Inc. H. № 11/026354; заявл. 30.12.2004; опубл. 13.03.2007.

Pat. Corning Inc. H. Aluminium silicophosphate glasses. Inventors: Aitken Bruce G., Beall George. Appl: 2004-12-30, no. 11/026354; publ: 2007-03-13. IPC C 03 C 3/062. Patent USA, no. 7189672.

Пат. 59105459 США, МПК6С 0 С 10/06, Glass-ceramic coating a stabilized hexacelsian crystal structure. Bell George H., Holland Hans J., Kohli Jeffrey T.; Corning Inc. № 08/742611; заявл 28.10.1996; опубл. 08.06.1999.

Pat. Corning Inc. Glass-ceramic coating a stabilized hexacelsian crystal structure. Inventors: Bell George H., Holland Hans J., Kohli Jeffrey T. Appl: 1996-10-28, no. 08/742611; publ: 1999-06-08. IPC 6 C 0 C 10/06. Patent USA, no. 59105459.

Бесогонов В. В., Скворцова И. Н. Уменьшение шероховатости поверхности ситалловой подложки до наноразмерных значений. Изв. вузов. Приборостроение. 2009. Т. 52, № 9. С. 73—76.

Besogonov V. V., Skvorcova I. N. Umen'shenie sherohovatosti poverhnosti sitallovoj podlozhki do nanorazmernyh znachenij [Reducing the surface roughness of the sitall substrate to nanoscale values]. Izv. vuzov. Priborostroenie [Proc. of universities. Instrumentation]. 2009, vol. 52, no. 9, pp. 73—76 (in Russian).

Development of high-strength anorthite glassceramics / O. V. Savvova et al. Voprosy Khimii i Khimicheskoi Tekhnologii. 2019. № 6. P. 190—196.

Savvova O. V., Babich O. V., Fesenko O. I., Topchy V. L., Hristych O. V. Development of high-strength anorthite glassceramics. Voprosy Khimii i Khimicheskoi Tekhnologii. 2019, no. 6, pp. 190—196.

Protective impact resistant composite materials based on aluminium-silicate glass-ceramics / O. V. Savvova et al. Functional Materials. 2019. № 26 (1). Р. 182—188.

Savvova O. V., Voronov G. K., Babich O. V., Fesenko O. I., Tymofieiev V. D. Protective impact resistant composite materials based on aluminium-silicate glass-ceramics. Functional Materials. 2019, no. 26 (1), pp. 182—188.

Glass-ceramic materials on the lithium disilicate basis: Achievements and development prospects / O. Savvova, G. Voronov, V. Topchyi, Y. Smyrnova. Chemistry and Chemical Technology. 2018. № 12 (3). Р. 391—399.

Savvova O., Voronov G., Topchyi V., Smyrnova Y. Glass-ceramic materials on the lithium disilicate basis: Achievements and development prospects. Chemistry and Chemical Technology. 2018, no. 12 (3), pp. 391—399.

Хамицаев А. С. Характеристики и зависимость свойств конструкционной керамики от температуры. Авиационно-космическая техника и технология. 2004. № 5 (13). С. 44—53.

Hamicaev A. S. Harakteristiki i zavisimost' svojstv konstrukcionnoj keramiki ot temperatury [Characteristics and temperature dependence of the properties of structural ceramics]. Aviacionno-kosmicheskaja tehnika i tehnologija [Aerospace engineering and technology]. 2004, no. 5 (13), pp. 44—53 (in Russian).

Published
2020-12-30
How to Cite
Savvova, O. V., Voronov, G. K., Ryabinin, S. A., Fedorenko, E. Y., & Timofeev, V. D. (2020). Alumina silicate glass-ceramic materials for electrical purposes. Scientific Research on Refractories and Technical Ceramics, 120, 174-185. https://doi.org/10.35857/2663-3566.120.17